headphone jack 182. It is to be appreciated that the location of any or all of the power jack 180, port(s) 164, and headphone jack 182 are not limited to the example shown in FIG. 19, but may be anywhere convenient or desirable on the portable computer 100. 15 Referring to FIG. 20, there is illustrated a top down view one example of a power adaptor 184 that may be used with the portable computer 100 and connected via the power jack 180. As known to those skilled in the art, the power adaptor 184 comprises a transformer (not shown) that converts the wall power to a level acceptable for use by the portable computer 100. In one embodiment, the power adaptor 184 comprises a substantially round body 186 that houses the transformer and other necessary components. A connector 188 may allow the power adaptor 184 to be connected to a wall outlet or extension cord. In one example, the connector 188 may include foldable prongs 190 that can be folded against the connector 188 for storage, and folded out for connection, as illustrated in FIG. 21. A cord 192 may be slidably accommodated within the body **186**, such that the cord may be stored within the body 20 and flexibly extended (up to its maximum length) by a user. According to one embodiment, the cord 192 may be wound around a cord spool 194 located within, or partially within, the body 186 of the power adaptor 184. As illustrated in FIG. 21, the cord spool 194 may be configured to slide out from the 25 body 186 of the power adaptor 184, such that the cord 192 can be wound around the cord spool 194, as illustrated in FIGS. 22A and 22B. According to another embodiment, the portable computer 100 may be configured to connect to a docking station 196, as 30 illustrated in FIG. 23. In one embodiment, a connector 198 on the docking station 196 may be configured to slidably connect to connectors 200 on the portable computer 100, as illustrated in FIG. 23. In one example, the connectors 200 may include power and audio connectors, such that the portable computer 35 100 may receive power from the docking station and receive and/or provide audio signals from/to the docking station, respectively. For example, the docking station may be coupled to external speakers, and the portable computer may provide audio signals to the docking station to be played 40 through the external speakers. In another example, the docking station 196 may also be coupled to an audio device (not shown), such as an MP3 player, which may provide audio signals and data to the portable computer 100, for example, to update an audio library on the portable computer. It is to be 45 appreciated that many other variations of communication between the portable computer 100 and devices coupled to the docking station 196 are possible, as would be recognized by those skilled in the art, and such variations are intended to be within the scope of this disclosure. Furthermore, numerous 50 variations on the connector(s) 198, 200 that couple the docking station 196 to the portable computer 100 are also possible, as would be recognized by those skilled in the art. For example, the portable computer 100 may include a multi-pin connector 202 located on the base 104, as illustrated in FIG. 55 24. Such and other variations are intended to be within the scope of this disclosure and the above-mentioned examples are provided for illustration only and are not intended to be In addition, it is to be appreciated that although the above 60 discussion refers primarily to the portable computer 100 being in either the laptop mode or easel mode, other modes or configurations are also possible. For example, as discussed above, because the portable computer 100 can be configured from the closed position, through the laptop mode into the 65 easel mode by rotating the display component 102, a number of configurations are possible in between "true" laptop mode puter 100 may be configured into a "frame" mode, as illustrated in FIG. 26, in which the portable computer is placed on a surface 212 with the keyboard 106 "face down" on the surface 212 and the display 110 facing upward. In the frame mode, the display component 102 may be at a similar orientation, and angle 134, with respect to the base component 104 as in the easel mode. However, rather than the base component 104 and display component 102 being oriented vertically with respect to the surface 212, as in the easel mode (in which 16 and "true" easel mode. In another example, the portable com- flat on the surface **212**, as shown in FIG. **26**. In one example, software and/or hardware protection may be provided for the keyboard to prevent keys from being pressed (or to prevent the portable computer from responding to pressed keys) when the portable computer is in the frame mode. the portable computer forms an inverted "V" as discussed above), in the frame mode, the base component 104 may lie Similarly, referring to FIG. 27, there is illustrated another configuration of the portable computer 100, referring to as the "flat" mode. In the flat mode, the display component 102 may be rotated (or opened) to approximately 180 degrees with respect to the base component 104, such that the base component and display component lay flat on a surface, with the keyboard 106 and display screen 110 exposed, as shown in FIG. 27. Unlike the easel and frame modes, in which the keyboard may be concealed and not easily accessible, in the flat mode, the keyboard is accessible and usable. In addition, as discussed above, the visual display on the display screen 110 may be automatically rotated to accommodate comfortable viewing of information by persons located in different positions relative to the base component 104 or display component 102. The visual display on the display screen 110 may also be manually adjusted by a user using, for example, the keyboard 106, touch pad 108 or mouse (not shown), scroll wheel 132 or navigation buttons (not shown). For example, if a user (located at position A) wishes to display information for a person located opposite the user (at position B), the visual display may be rotated (automatically or manually) 180 degrees such that the information appears "right-wayup," to the person at location B, even through the display screen 110 is upside-down for that person. Similarly, in another example, the visual display may be rotated (automatically or manually) 90 degrees such that the information appears "right-way-up," for a person at location C. In one example, a user can "toggle" the visual display among various orientations. For example, a user at location A may have the visual display facing themselves while using the keyboard 106 or other controls to change or access information on the display, then toggle the display orientation 180 or 90 degrees to display the information for persons at locations B or C. In summary, various aspects and embodiments provide a portable computer that is configurable between different operating modes, including a laptop mode and an easel mode, and that is capable of different display formats and functionality in the different modes. The ability to view and operate the portable computer in the different laptop and easel modes, and to incorporate features and functions such as an alarm clock, digital photograph frame, voice-over-IP, etc, may provide enhanced flexibility and usefulness. In addition, the portable computer may include a graphical user interface that may work seamlessly with the computer hardware to provide an enjoyable, holistic user experience. Having thus described several aspects of at least one embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. For example functionality or features that have been described herein in connection with hardware may